久久亚洲国产成人影院-久久亚洲国产的中文-久久亚洲国产高清-久久亚洲国产精品-亚洲图片偷拍自拍-亚洲图色视频

Global EditionASIA 中文雙語Fran?ais
World
Home / World / Kaleidoscope

Laser-treated metals could be next step in fight against germs

By Barry He | China Daily Global | Updated: 2020-04-23 09:28
Share
Share - WeChat
A woman cleans door handles at the entrance to Westminster Cathedral in London, Britain, March 15, 2020. [Photo/Agencies]

Countless types of microbe that attack the human body can live on outdoor surfaces for days, meaning that frequently touched surfaces, such as door handles and handrails, can become locations where disease can spread at an alarming rate.

Disinfecting surfaces using a variety of chemicals, including alcohol concentrations and pesticide-related solutions, is one way to tackle the problem but the products are costly, both financially and in terms of time.

Researchers at Purdue University in the United States have now added to the options by creating a laser treatment that has the potential to turn any metal surface into an environment that is immediately hostile to bacteria, merely by altering the metal's surface texture.

The research has had promising results with scientists demonstrating that it was capable of manipulating the surface of copper to immediately kill bacteria, including MRSA.

The technique utilizes a laser to create small patterns on a nanoscale level on a metallic surface. The rugged texture increases the chance of a microbe rupturing on impact.

Imagine, instead of having a smooth runway for a plane to land on, large speed bumps are added to prevent a safe touchdown.

Copper's anti-bacterial qualities have been known for centuries which promoted its use as a physical currency when an object was needed to exchange between many hands.

However, instead of taking a matter of hours to break down as it would on untreated copper, bacteria instantly disintegrates on the microscopic rough texture that has received the laser treatment.

It should be noted, however, that this technique is not suitable yet to kill viruses such as the novel coronavirus that causes COVID-19 because viruses are much smaller than bacteria and would require a further refinement.

Viruses are so much smaller in fact, that a whole class of viruses, called Bacteriophages, exist with the sole purpose of infecting and reproducing within bacteria.

Led by Professor Rahim Rahimi, the research has instead shifted toward testing the technology on other materials, such as polymer plastics, to see if the same results in reducing the risk of bacterial growth can be achieved there too.

The application would be for devices such as orthopedic implants, including knee and hip replacements, and also for items such dressings and wearable implanted medical devices.

It is hoped that these would reduce the need for antibiotics and also help address growing concern about antibiotic resistance.

"The nice thing about our approach is it's not something we are adding to the surface, so there's no kind of additional material required, no antibiotics, no spray-coating," Rahimi said in a statement. "It's just modifying the native surface of the material. Antibiotic resistance is a big challenge right now, there are superbugs and bugs that are becoming more aggressive, antibiotics are not effective on them. We're developing technology that allows us to modify the surface of metal by laser surface modification to enhance antimicrobial properties."

The future of our war against microbes has been raging since before our inception as a species, and only in the last few centuries have we developed additional weapons in our arsenal against this common enemy, aside from our natural immune system.

It is vital that we continue to fund research and development in this field, so that scientists can continue to come up with newer and ever more ingenious solutions to continue this global battle against this seemingly infinite enemy.

Most Viewed in 24 Hours
Top
BACK TO THE TOP
English
Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
License for publishing multimedia online 0108263

Registration Number: 130349
FOLLOW US
主站蜘蛛池模板: 免费欧洲毛片a级视频无风险 | 美国免费毛片 | 欧美日韩在线观看区一二 | 亚洲天堂免费在线视频 | 亚洲欧美视频一区 | 国产精品亚洲专区在线播放 | 亚洲天堂欧美 | 国产成人亚洲精品91专区高清 | 91久久国产综合精品女同国语 | 国产成人精品999在线 | 高清国产亚洲va精品 | 欧美的高清视频在线观看 | 美国一级毛片免费 | 国产综合久久久久影院 | 日本乱人伦在线观看免费 | 一级特级欧美aaaaa毛片 | 亚洲日产2021三区 | 欧美国产三级 | 国产乱淫视频 | 亚洲午夜精品一级在线播放放 | 在线播放国产真实女同事 | 成人性免费视频 | 99久久精品毛片免费播放 | 成人一级视频 | 日韩国产欧美成人一区二区影院 | 国产91网址 | 91精品免费看 | 97视频免费播放观看在线视频 | 欧美一a级做爰 | 国产日本亚洲欧美 | 精品一区二区三区四区在线 | 中文成人在线视频 | 日本特黄特色免费大片 | 欧美xxx精品 | 亚洲品质自拍视频网站 | 国产永久高清免费动作片www | 久草资源网| 90岁老太婆一级毛片 | 国产va精品网站精品网站精品 | 国产精品成人自拍 | 手机看片1024精品国产 |